
Online Technical Article, February 2014
Edinburgh Napier University - Playstation 3 Development

Tutorial 4
Introduction to GCM and PS3 graphics
Playstation 3 Development

Sam Serrels and Benjamin Kenwright*

Abstract
A beginners guide to getting started with graphical programming and developing on Sony’s Playstation 3 (PS3). This article
gives a brief introduction for students to initializing and working with the GCM graphics API. For example, setting up the GCM,
getting and setting screen paramaters, initializing basic vertex/pixel shaders, and drawing triangles.

Keywords
Sony, Graphics, Shaders, PS3, PlayStation, Setup, GCM, Target Manager, ELF, PPU, SPU, Programming, ProDG, Visual
Studio

* Edinburgh Napier University, School of Computer Science, United Kingdom: b.kenwright@napier.ac.uk

Contents

Introduction 2

1 Graphics Command Management (GCM) 2
1.1 GCM and PSGL . 2

2 GCM Memory Management 2
2.1 Memory Allocation . 2
2.2 Memory Access . 3
2.3 GCM Memory code . 3

3 GCM Libraries 3

4 Compiling Cg Shaders (.cg, .vpo, .fpo) 4

5 Skeleton Graphics ’Without’ Any Wrapper Classes 5
5.1 Implementation Overview 5
5.2 Source Code . 5
5.3 Executable Output . 9

6 Conclusion 10

References 10

Introduction
About the Edinburgh Napier University Game Technology
Playstation 3 Development Lessons Edinburgh Napier
University Game Technology Lab is one of the leading game
teaching and research groups in the UK - offering students
cutting edge facilities that include Sony’s commercial devel-
opment kits. Furthermore, within the Edinburgh Napier Game
Technology group are experienced developers to assist those
students aspiring to releasing their own games for PlayStation.
Students have constant access to he Sony DevKits and encour-
age enthusiastic students to design and build their own games
and applications during their spare time [4].

This tutorial This tutorial will cover the essentials to work-
ing with the Sony GCM rendering library and interfacing
with the RSX graphics processor and it’s memory. Display-
ing any sort of graphics on a screen from the Playstation 3
requires knowledge of how to to work it’s specific graphics
hardware. The limited memory of the system brings in an
extra dimension of work when managing and transferring
data, and calls for a greater level of optimisation than desk-
top computer graphics. This tutorial will cover how to work
with bare-minimum memory management provided to make
a usable and understandable rendering framework.

Figure 1. Screen Capture - This tutorial draws a triangle to
the screen. We set the view and projection matrix to an
identity to keep the example and simple as possible.

Tutorial 4
Introduction to GCM and PS3 graphics — 2/10

Additional Reading In addition to the lesson tutorials, we
would recommend reading a number of books on Playstation
3 development and cross-platform coding, such as, Cell Pro-
gramming for the PS3 [3], Vector Maths and Optimisation for
the PS3 [1], and Cross-Platform Development in C++ [2].

1. Graphics Command Management
(GCM)

What is GCM and why do use GCM for the graphics? GCM
is the Graphics Command Management library (i.e., libGCM).
We use GCM as it has no abstraction layer and allows us
to generates graphical commands directly (i.e., for computa-
tional speed reasons). This article shows you the essential API
necessary to manage the graphical command generation and
command buffers to control the command chain and display
graphics on the screen.

1.1 GCM and PSGL
Developing with the official SDK leaves you with two APIs
to choose from in terms of rendering. GCM and PSGL (i.e.,
Playstation OpengGL). GCM is specific to the hardware and
is as low level as it gets, and as a result what you make with it
will (or should) preform somewhat better. However, it should
be noted, the PSGL is also popular due to using the OpenGL
convention - hence simple to understand and implement.

OpenGL ES 1.0 PSGL is OpenGL ES 1.0 complaint mean-
ing that if you’re a beginner there are tons of resources avail-
able online with information about writing for it. Furthermore,
it means that you wont be teathering yourself to PS3 API.
OpenGL exists in some form or another on effectively every
platform in existence so its a good idea to become familiar
with it and it will make it a lot easier to port anything you
write. PSGL also supports a lot of stuff that isn’t a standard
part of OpenGL ES 1.0 like vertex buffer objects and NVIDIA
Cg shaders. While this article introduces GCM - as it of-
fers the most flexibility and power - we will introduce the
PSGL later. When working with the PSGL, there is no need
to start completely from scratch, as you do with the GCM.
However, as with every coin - there are two sides - with the
added simplicity you loose the additional control and speed.

2. GCM Memory Management

GCM does no memory management for us. During initial-
ization of the GCM library we’re given a pointer to the start
of the RSX memory. That means we’re going to have to cre-
ate our own functions to manage the graphical RAM (e.g.,
allocate and de-allocation of textures and shaders). GCM
calls graphics RAM ‘local memory’ - as it’s local to the RSX
processor of the Playstation 3. In addition, specific GCM
functions require structures to memory aligned (e.g., 32, 64 or
128 byte alignment), so we must provide functions to allocate
‘aligned’ memory.

2.1 Memory Allocation
So we have have established that GCM does no memory
management of the local memory, but what does that mean?
How much work are we going to have to do really? Let us
have a look at how main memory is managed (See Figure 2) :

Figure 2. Main Memory - How memory is allocated

Stack memory The stack has the best kind of management,
it’s completely handled by the system. When you create a
vriable such as ”int var = 0;” you don’t need to care where it
is stored (although with pointers you can find out) and you
don’t have to free the memory once you have finished with
the variable, this is done automatically when it goes out of
scope.

Heap memory The Heap is different to the stack as you
need to keep track of what is allocated, and delete/free that
memory when it is no longer needed. You don’t need to know
where in the heap items are placed when they are created, the
system will find an appropriate section of free space, reserve
it, and then give you a pointer to the start of this space so you
can reference and delete the object.

RSX local memory Local memory is just like heap memory,
but it doesn’t keep track of anything. All it knows is the
range of memory addresses that are valid. It doesn’t know if
anything is stored in any of these addresses, just that items
can be stored there. We must keep track of everything we
store in local memory, and how big each item is, so when we
don’t overwrite previous data when storing new data. If we
wanted to we could write anything to any valid local memory

www.napier.ac.uk/games/

Tutorial 4
Introduction to GCM and PS3 graphics — 3/10

address and overwrite any previous data, this isn’t allowed in
main memory.

2.2 Memory Access
If we need to manage local memory, how do we access it?
The PPU can write and read directly to RSX local memory,
this is done by requesting a pointer to the start of the local
memory. GCM grantees that this memory is contiguous, so
the next address up from the start address is valid, and the next
one and so on until the maximum memory size is reached.
The addresses that we use to access the local memory from
the main application code running on the PPU, are the result
of some mapping functions. To the PPU, the starting address
of local memory is around the what would be the address
for 1GB, this is to avoid clashes with main memory, as main
memory address will never be bigger than 256mb.
The RSX can’t actually use these mapped addresses to access
it’s own memory as the true starting address of its memory is 0,
not 1GB. So when code is running explicitly on the RSX chip
(e.g. Shaders) it needs to use a different addressing system
than the PPU.
The RSX uses offset addresses, which is how far from the start
of local memory an item is located. This may sound confusing,
but keep in mind that offset address are only needed in RSX
specific code, and there is a function that converts between
the addressing systems. (See Figure 3)

Reading Main memory from RSX This system is not sym-
metrical, the RSX cannot access main memory in the same
mannor, it doesn’t have all of the main memory addresses
mapped to its own address system. It does however have some
of the main memory address mapped, this is a small section
of memory that is used to send instructions to the RSX.
During initialisation of GCM, the size and location of this
RSX accessible ”chunk” of main memory must be defined.
This chunk is used as as the Command buffer, when you call
a GCM command, it is stored in this buffer to be read and exe-
cuted by the RSX. If the RSX needs to access other data from
main memory, it must call specific data transfer functions,
which have additional overhead, however this is a rare occa-
sion as the PPU almost always in charge of sending the data
to the RSX. The only time this may happen is for streaming
images or large arrays.

2.3 GCM Memory code
This code reserves a 1MB area of main memory for storing
GCM commands, each command is 64kb in size. This means
that the buffer can store a queue of 16 commands, but in reality
15, as GCM uses the first 4kb of the buffer for special flags.

Listing 1. Initialising GCM with a command buffer
1 //The size of a chunk of main memory that the RSX can access.
2 //Has to be 1MB aligned, so minimum size is 1MB.
3 # define HOST SIZE (1024∗1024) //1MB
4
5 // Space reserved for each GCM command, minimum is 64KB.
6 # define COMMAND SIZE (65536) // 64 KB
7

8 //Reserve a 1MB aligned chunk of memory. This is happening
9 // on main memory, so we can use the stock memalign() function.

10 void ∗host addr = memalign(1024∗1024, HOST SIZE);
11
12 //Initialize libgcm and map the command buffer
13 // from main memory to the RSX IO address space.
14 cellGcmInit (COMMAND SIZE , HOST SIZE , host addr);

Here are the functions that we will use to allocate data
into local memory:

Listing 2. Managing our own memory on the RSX
1 //The Pointer to the Start of our chunk of RSX accessible memory
2 uint32 t localHeapStart = 0;
3
4 //At some point, once GCM has been initialised, we will do this:
5 localHeapStart = (uint32 t)config.localAddress;
6 //Now that we know the stating address of local memory,
7 // we can start writing to it. As we write data, we
8 // increment localHeapStart, like a bookmark,
9 // so we don’t overwrite data.

10
11 //This function reserves a space of a specified size.
12 //Note: it doesn’t actually write anything to memory.
13 //All it does is return the current address that points to free space,
14 //then moves localHeapStart to after the space needing reserved.
15 void ∗ LocalMemoryAlloc (const uint32 t size)
16 {
17 uint32 t currentHeap = localHeapStart ;
18 localHeapStart += (size + 1023) & (˜1023);
19 return (void ∗) currentHeap ;
20 }
21
22 // Expands ‘Allocation’ function but includes byte alignment
23 void∗ LocalMemoryAlign(const uint32 t alignment,
24 const uint32 t size)
25 {
26 localHeapStart =
27 (localHeapStart + alignment −1) & (˜(alignment −1));
28 return (void ∗) LocalMemoryAlloc (size);
29 }

3. GCM Libraries
Linker Input Dependencies We use external libraries (e.g.,
libGCM), hence, we need to let the compiler know where they
are. See Figure 4 to ensure the additional dependencies tab
within the Visual Studio configuration is setup to include the
necessary paths and libraries .

Listing 3. Visual Studio PS3 include libraries - see Figure 4
1 libgcm cmddbg.a;
2 libgcm sys stub.a;
3 libsysutil stub.a;

These are also necessary, but should already be included
by default

1 libsn.a
2 libm.a
3 libio stub.a
4 libfs stub.a

The header files we will be using in this tutorial are:
sysutil/sysutil sysparam.h, cell/gcm.h, vectormath/cpp/vector-
math aos.h, stdio.h, stdlib.h, math.h, string,

www.napier.ac.uk/games/

Tutorial 4
Introduction to GCM and PS3 graphics — 4/10

Figure 3. GCM Memory Mapping - How RSX local memory is mapped to Main memory

Figure 4. Configure Project Link Libraries - Ensure you
have the necessary libraries to compile GCM.
In the case that Visual studio cannot find the libraries, add
these paths to Additional Library Directories :
$(SCE PS3 PATH)/ppu/lib
$(SCE PS3 ROOT)/target/ppu/lib

4. Compiling Cg Shaders (.cg, .vpo, .fpo)
We need to can compile any ‘.cg’ files to their compiled raw
binary format for the Playstation 3 graphical output. The PS3
has no ‘default’ shaders built in. Hence, we need to include
a minimum binary shader to get something displaying on
screen.

Automation In later lessons, we will automatically include
the compilation of the shaders using Visual Studio’s ‘Custom

Build Step’. For now, we show how to compile a shader at the
command prompt to create a simple shader binary that can be
loaded either using the standard C libraries (e.g., fopen and
fread), or included at the bottom of the file (as done in this
example) - so we don’t need to include any external assets.

Command Prompt The PS3 SDK installation is installed at
“C:/usr/local/cell/” - and is defined by “$(SCE PS3 ROOT)”.
Within the PS3 SDK there is an executable called ‘sce-cgc.exe’
that we use to compile the shaders into their specific binary
format. We can call the shader compiler from the command
prompt and pass it the necessary arguments to create the
compiled vertex and fragment shader, as shown below in
Listing 4 with the basic shader text files given in Listing 5 and
6.

Listing 4. Compiling the fragment and vertex shader
(fs basic.cg) at the command prompt (note the profile
information ‘sce vp rsx’ and ‘sce fp rsx’)

1 C:\usr\local\cell\host−win32\Cg\bin\sce−cgc.exe −profile sce fp rsx −o ”.\←↩
fs basic.fpo” ”.\fs basic.cg”

2
3 // Command prompt output:
4 // 11 lines, 0 errors.
5 // Binary shader output to C:\napier\sourcecode\fs basic.fpo
6
7 C:\usr\local\cell\host−win32\Cg\bin\sce−cgc.exe −profile sce vp rsx −o ”←↩

.\vs basic.fpo” ”.\vs basic.cg”
8
9

10 // Command prompt output:
11 // 17 lines, 0 errors.
12 // Binary shader output to C:\napier\sourcecode\vs basic.fpo

Listing 5. Basic Vertex Shader (vs basic.cg)

www.napier.ac.uk/games/

Tutorial 4
Introduction to GCM and PS3 graphics — 5/10

1 // vs basic.cg
2 void main
3 (
4 float4 position : POSITION,
5 float4 color : COLOR,
6
7 uniform float4x4 modelViewProj,
8
9 out float4 oPosition : POSITION,

10 out float4 oColor : COLOR
11)
12 {
13 oPosition = position; // mul(ModelViewProjMatrix, position);
14 oColor = color;
15 }

Listing 6. Basic Fragment Shader (fs basic.cg)
1 // fs basic.cg
2 void main
3 (
4 float4 color in : COLOR,
5 out float4 color out : COLOR
6)
7 {
8 color out = color in;
9 }

5. Skeleton Graphics ’Without’ Any
Wrapper Classes

We present a single file that shows the sequential steps nec-
essary from entering ’main()’ all the way through to getting
triangles on screen (e.g., initializing monitor, allocating sys-
tem resources, loading in graphical components, such as the
vertex and pixel shader).

5.1 Implementation Overview
The sample GCM implementation shown below in Listing
7 will get you started rendering using the Playstation GCM
API. The implementation is stripped down to the low-level
API (i.e., stripped out any wrapper classes). Furthermore,
the sample listing is a single function (i.e., main()) that the
student can work through from start to finish to see the steps
necessary. This tutorial focuses on introducing the API neces-
sary to render graphics on the Playstation. Later, tutorials will
work on loading complex geometry and animations. Note, the
Playstation SDK comes with the vector, quaternion, and ma-
trix classes for mathematical operations (e.g., creating camera
matrices, matrix multiplication, dot product).

The basic GCM program shown below in Listing 7 per-
forms the following steps:
• Initialise GCM and display
• Load in our pre-compiled shaders
• Initialise a vertex array (i.e., triangle information)
• Render the scene while updating the triangles (i.e., show

them changing)
• Release resources and exit

The implementation can be a bit over-whelming initially -
since it requires over 400 lines of code to get a simple triangle
on the screen. However, once we explain everything in detail

and you understand what is happening at each stage, you’ll
realize the flexibility and potential advantages of being able
to create and control low-level features.

5.2 Source Code

Listing 7. Complete implementation - main.cpp - self
contained graphical source code example to get you up and
running with the PS3 renderer quickly - uses GCM library

1 /∗
2 Self−contained stripped down − skeleton system to get you up and running with←↩

graphics on the PS3 − no wrapper classes,
3 no classes or compiling shaders − single file − that does everything from start to←↩

end − initializes gcm,
4 sets up memory, clears screen to gradually changing colour, and draws a triangle←↩

on the screen
5 ∗/
6 // Custom Asserts − For Debugging
7 #define DBG HALT { asm volatile(”trap”); }
8
9 #define DBG ASSERT(exp) { if (!(exp)) {DBG HALT;} }

10 // Prints the suplied string on assert fail, then call DBG HALT
11 #define DBG ASSERT MSG(exp, smsg) { if (!(exp)) {puts (smsg);←↩

DBG HALT;} }
12 // Calls the suplied function on assert fail, then call DBG HALT
13 #define DBG ASSERT FUNC(exp, func) { if (!(exp)) {func; DBG HALT;} }
14
15 // For putf − prints
16 #include <stdio.h>
17 #include <stdlib.h>
18 #include <math.h>
19
20 #include <string> // for memcpy(..)
21 using namespace std;
22
23 // A very basic vertex and framgent shader − placed at the bottom of the file
24 extern unsigned char fs basic[208];
25 extern unsigned char vs basic[672];
26
27 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
28
29 // e.g., CELL VIDEO OUT PRIMARY, CellVideoOutResolution
30 #include <sysutil/sysutil sysparam.h>
31
32 // libgcm
33 #include <cell/gcm.h>
34 using namespace cell::Gcm;
35
36 // vectormath − so we can use Matrix4
37 #include <vectormath/cpp/vectormath aos.h>
38 using namespace Vectormath::Aos;
39
40
41 /∗
42 To enable the RSX to access main memory, we must setup a section
43 of 1MB aligned memory within main memory and point RSX at it.
44 When you call a GCM command, it is stored in a part of this memory chunk
45 called the command buffer, which the RSX reads from and executes.
46 ∗/
47
48 //The size of a chunk of main memory that the RSX can access.
49 //Has to be 1MB aligned, so minimum size is 1MB.
50 # define HOST SIZE (1024∗1024) //1MB
51 //size of the space reserved for each GCM command, minimum size is 64KB.
52 # define COMMAND SIZE (65536) // 64 KB
53
54 # define BUFFERS COUNT (2) // double buffering
55
56 // We need to manage our own memory on the PS3 − furthermore,
57 // we have to ensure the memory we create is aligned on specific
58 // boundaries, e.g., 64, 128. We, set the start address of our local
59 // heap on startup
60
61 // API call necessary to get the start address after we’ve set
62 // everything up:
63 // CellGcmConfig configa ;
64 // cellGcmGetConfiguration(&configa);

www.napier.ac.uk/games/

Tutorial 4
Introduction to GCM and PS3 graphics — 6/10

65 // localHeapStart = (uint32 t)configa.localAddress;
66
67 // Start of our chunk of RSX accessible memory
68 uint32 t localHeapStart = 0;
69
70 //This function reserves a space of a specified size. Note: it doesn’t actually write←↩

anything to memory.
71 //All it does is return the current address that points to free space,
72 // and then moves the localHeapStart by the size of the space needing reserved.
73
74 // Allocation, returns address to the start of a continuous memory segment of ’size’
75 void ∗ LocalMemoryAlloc (const uint32 t size)
76 {
77 uint32 t currentHeap = localHeapStart ;
78 localHeapStart += (size + 1023) & (˜1023);
79 return (void ∗) currentHeap ;
80 }
81
82 // Expands on ‘Allocation’ function but also does some alignment
83 void ∗ LocalMemoryAlign (const uint32 t alignment, const uint32 t size)
84 {
85 localHeapStart = (localHeapStart + alignment −1) & (˜(alignment −1));
86 return (void ∗) LocalMemoryAlloc (size);
87 }
88
89 // Vertex structure − very simple
90 struct stVertex
91 {
92 float x, y, z;
93 uint32 t rgba ;
94 };
95
96
97 // Heart of ’everything’ for this introduction −
98 // get feel for the essential API − step−by−step
99 //

100 // Program Entry Point: main
101 //
102 int main()
103 {
104 puts(”Program Entry Point: main\n”);
105
106 //Reserve a 1MB aligned chunk of memory
107 void ∗host addr = memalign(1024∗1024, HOST SIZE);
108 DBG ASSERT MSG(host addr != NULL,”memalign() failed!”);
109
110 //This function initializes libgcm and maps the buffer on main memory to IO←↩

address space so that RSX can access it.
111 int err = cellGcmInit (COMMAND SIZE , HOST SIZE , host addr);
112 DBG ASSERT MSG(err==CELL OK, ”cellGcmInit failed!”);
113
114 // ∗∗∗ #Init Display# ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
115
116 CellVideoOutState videoState;
117 CellVideoOutResolution resolution;
118
119 //Get the current display mode,
120 // This has to have been previously set in the target manager at some point
121 err = cellVideoOutGetState(CELL VIDEO OUT PRIMARY, 0, &videoState);
122 DBG ASSERT MSG(err==CELL OK, ”cellVideoOutGetState failed !”);
123
124 err = cellVideoOutGetResolution(videoState.displayMode.resolutionId, &←↩

resolution);
125 DBG ASSERT MSG(err==CELL OK, ”cellVideoOutGetResolution failed !”);
126
127 printf(”Output Resolution:\t%i x %i \n”, resolution.width, resolution.height);
128
129 //Rebuild a CellVideoOutConfiguration, using the current resolution
130 uint32 t color depth=4; // ARGB8
131 uint32 t z depth=4; // COMPONENT24
132 uint32 t color pitch = resolution.width∗color depth;
133 uint32 t color size = color pitch ∗ resolution.height ;
134 uint32 t depth pitch = resolution.width∗z depth;
135 uint32 t depthSize = depth pitch ∗ resolution.height ;
136
137 CellVideoOutConfiguration video cfg ;
138 //Fill videocfg with 0
139 memset(&video cfg , 0, sizeof(CellVideoOutConfiguration));
140
141 video cfg.resolutionId = videoState.displayMode.resolutionId ;

142 video cfg.format =←↩
CELL VIDEO OUT BUFFER COLOR FORMAT X8R8G8B8 ;

143 video cfg.pitch = color pitch;
144
145 //Set the video configuration, we haven’t changed anything other than possibly←↩

the Z/colour depth
146 err = cellVideoOutConfigure (CELL VIDEO OUT PRIMARY, &video cfg ,←↩

NULL , 0);
147 DBG ASSERT MSG(err==CELL OK, ”cellVideoOutConfigure failed !”);
148
149 //Fetch videoState again, just to make sure everything went ok
150 err = cellVideoOutGetState(CELL VIDEO OUT PRIMARY, 0, &videoState);
151 DBG ASSERT MSG(err==CELL OK, ”cellVideoOutGetState failed !”);
152
153 //Store the aspect ratio
154 float screenRatio;
155 switch (videoState.displayMode.aspect){
156 case CELL VIDEO OUT ASPECT 4 3:
157 screenRatio = 4.0f/3.0f;
158 break;
159 case CELL VIDEO OUT ASPECT 16 9:
160 screenRatio = 16.0f/9.0f;
161 break;
162 default:
163 printf(”unknown aspect ratio %x\n”, videoState.displayMode.aspect);
164 screenRatio = 16.0f/9.0f;
165 }
166
167 cellGcmSetFlipMode (CELL GCM DISPLAY VSYNC);
168
169
170 // ∗∗∗ #Create buffers# ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
171 printf(”Creating buffers\n”);
172
173 //GCMconfig holds info regarding memory and clock speeds
174 CellGcmConfig config ;
175 cellGcmGetConfiguration(&config);
176
177 //Get the base address of the mapped RSX local memory
178 localHeapStart = (uint32 t)config.localAddress;
179
180 //Allocate a 64byte aligned segment of RSX memory that is the size of a depth←↩

buffer
181 void ∗ depthBuffer = LocalMemoryAlign(64 , depthSize);
182 uint32 t depthOffset;
183
184 /∗ cellGcmAddressToOffset converts an effective address in the area accessible←↩

by the RSX to an offset value.
185 An offset is the space between from the base address of local memory and a←↩

certain useable address.
186 Offsets are used in gcm commands that deal with shader parameters, texture←↩

mapping and vertex arrays.
187 They serve no real use other than as a parameter for these functions.
188 ∗/
189
190 //The offset value will be stored into depthOffset.
191 cellGcmAddressToOffset (depthBuffer , &depthOffset);
192
193 //Surfaces[] Contains the buffers that will be rendered into
194 CellGcmSurface surfaces[BUFFERS COUNT];
195
196 for(int i = 0; i < BUFFERS COUNT; ++i)
197 {
198 ///Allocate a 64byte aligned segment of RSX memory that is the size of a colour←↩

buffer
199 void ∗buffer = LocalMemoryAlign (64 , color size);
200
201 //Get the offset address for it and store it in surfaces[i].colorOffset [0]
202 cellGcmAddressToOffset (buffer , &surfaces[i]. colorOffset [0]);
203
204 /∗ This function registers a buffer that outputs to a display.
205 This is the point where the buffer is actually written to local memory.
206 Parameters:
207 cellGcmSetDisplayBuffer (Buffer ID (0 − 7), memory offset, pitch −←↩

Horizontal byte width,
208 width − Horizontal resolution (number of pixels), height − Vertical resolution(←↩

number of pixels)
209 ∗/
210 cellGcmSetDisplayBuffer (i, surfaces[i].colorOffset[0], color pitch, resolution.←↩

width, resolution.height);
211

www.napier.ac.uk/games/

Tutorial 4
Introduction to GCM and PS3 graphics — 7/10

212 // Now we set other parameters on each CellGcmSurface object
213
214 //whether to place the color buffer, main memory or local memory.
215 surfaces[i].colorLocation [0] = CELL GCM LOCATION LOCAL ;
216 //Pitch size of the color buffer (resolution.width∗color depth)
217 surfaces[i].colorPitch [0] = color pitch ;
218 //Target of the color buffer
219 surfaces[i].colorTarget = CELL GCM SURFACE TARGET 0 ;
220
221 //Init the color buffers
222 //Up to 4 color buffers can be used on a CellGcmSurface, but we only use 1.
223 for (int j = 1; j < 4; ++j)
224 {
225 surfaces[i].colorLocation[j] = CELL GCM LOCATION LOCAL ;
226 surfaces[i].colorOffset[j] = 0;
227 surfaces[i].colorPitch[j] = 64;
228 }
229
230 //Type of render target (Pitch or swizzle)
231 surfaces [i]. type = CELL GCM SURFACE PITCH ;
232 //Antialiasing format type (None in this case)
233 surfaces [i]. antialias = CELL GCM SURFACE CENTER 1;
234 //Format of the color buffer
235 surfaces [i]. colorFormat = CELL GCM SURFACE A8R8G8B8;
236 //Format of the depth and stencil buffers (16−bit depth or 24−bit depth and 8−←↩

bit stencil)
237 surfaces [i]. depthFormat = CELL GCM SURFACE Z24S8;
238 //whether to place the depth buffer, main memory or local memory.
239 surfaces [i]. depthLocation = CELL GCM LOCATION LOCAL;
240 //The offset address to our depth buffer (We only need 1 for both surfaces)
241 surfaces [i]. depthOffset = depthOffset;
242 //Pitch size of the depth buffer (resolution.width∗z depth)
243 surfaces [i]. depthPitch = depth pitch;
244 //Dimensions (in pixels)
245 surfaces [i]. width = resolution.width ;
246 surfaces [i]. height = resolution.height ;
247 //Window offsets
248 surfaces [i].x = 0;
249 surfaces [i].y = 0;
250 }
251
252
253 /∗
254 The surfaces[] array contains CellGcmSurface objects and is in stack memory←↩

somewhere,
255 and a bunch of new buffer objects have just been created and stored in RSX←↩

Local Memory.
256 Each CellGcmSurface object has a pointer to its corresponding buffer in .←↩

colorOffset [0].
257 When we call cellGcmSetSurface(), we pass it an CellGcmSurface from our←↩

array,
258 The parameters that we set on that object will be read, processed and passed to←↩

the RSX.
259 ∗/
260
261 //Set Surface[0] to be the first surface to render to
262 cellGcmSetSurface (& surfaces [0]);
263 //Used to keep track of the surface currently being rendered to.
264 uint8 t swapValue = 0;
265
266 // ∗∗∗ #Load Shaders# ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
267 printf(”Loading shaders\n”);
268
269 // This loader code is specific to this example,
270 // as the compiled shaders are at the bottom of this file in a char[] array
271
272 //Fragment program
273 CGprogram programFS;
274 //Fragment microcode
275 void∗ ucodeFS;
276
277 uint32 t offsetFS;
278 {
279 const unsigned int dataSize = sizeof(fs basic);
280
281 //Allocate some heap memory the size of the shader code
282 char ∗ data = (char ∗)malloc (dataSize);
283 //Copy the shader code into that memory location
284 memcpy(data, fs basic, dataSize);
285 //Cast the copied code data to a CGprogram object
286 programFS = (CGprogram)(void ∗) fs basic ;

287
288 //Initialize the Cg binary program on memory for use by RSX.
289 cellGcmCgInitProgram (programFS);
290
291 unsigned int ucodeSize ;
292 void∗ ucodePtr;
293
294 //Stores pointer to the microcode in ucodePtr, and the size of the microcode into←↩

ucodeSize.
295 cellGcmCgGetUCode(programFS , &ucodePtr , &ucodeSize);
296
297 //Reserve some local memory to store the fragment shader microcode
298 ucodeFS = LocalMemoryAlign(64 , ucodeSize);
299 //Copy the microcode into local memory
300 memcpy (ucodeFS , ucodePtr , ucodeSize);
301
302 //Get offset of the fragment microcode in local memory, stor into &offsetFS.
303 cellGcmAddressToOffset (ucodeFS , &offsetFS);
304
305 printf(”Fragment shader loaded\t Size: %i bytes\n”, ucodeSize);
306 }
307
308
309 //Vertex program
310 CGprogram programVS;
311 //vertex microcode
312 void∗ ucodeVS;
313
314 {
315 unsigned int dataSize = sizeof(vs basic);
316 //Allocate some heap memory the size of the shader code
317 char ∗ data = (char ∗)malloc (dataSize);
318 //Copy the shader code into that memory location
319 memcpy(data, vs basic, dataSize);
320 //Cast the copied code data to a CGprogram object
321 programVS = (CGprogram)(void ∗) data ;
322
323 //Initialize the Cg binary program on memory for use by RSX.
324 cellGcmCgInitProgram (programVS);
325
326 unsigned int ucodeSize ;
327
328 //The vertex program is left in main memory instead of being transferred to←↩

local memory,
329 // since it will be ultimately loaded into the command buffer anyway.
330
331 //Stores pointer to the microcode in ucodePtr, and the size of the microcode into←↩

ucodeVS
332 cellGcmCgGetUCode(programVS, &ucodeVS, &ucodeSize);
333
334 printf(”Vertex shader loaded\t Size: %i bytes\n”, ucodeSize);
335 }
336
337 /∗
338 With all that pointer and memory juggling, let’s recap where we are now.
339 programFS and programVS are CGprograms in main memory
340 ucodeVS is a pointer to the vertex shader microcode in main memory
341 offsetFS is an offset address pointer to the fragment shader microcode in local←↩

memory
342 ∗/
343
344 // Set the current shaders to use
345 cellGcmSetFragmentProgram (programFS , offsetFS);
346 cellGcmSetVertexProgram (programVS , ucodeVS);
347
348 // ∗∗∗ #Setup Shaders# ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
349 printf(”Linking shader parameters\n”);
350
351 /∗
352 CGparameter − shader program parameters/uniforms.
353 (int)ParameterResource − RSX hardware that will process the parameter.
354 ∗/
355
356 // Resolve position and colour parameters.
357 CGparameter position = cellGcmCgGetNamedParameter(programVS, ”position”←↩

);
358 DBG ASSERT(position);
359 CGparameter color = cellGcmCgGetNamedParameter(programVS, ”color”);
360 DBG ASSERT(color);
361 CGparameter mvp = cellGcmCgGetNamedParameter (programVS , ”←↩

modelViewProj”);

www.napier.ac.uk/games/

Tutorial 4
Introduction to GCM and PS3 graphics — 8/10

362 DBG ASSERT(mvp);
363
364 // Get the index of the vertex and colour attribute that will be set for the vertex←↩

shader
365 // These are used for cellGcmSetVertexDataArray();
366 int PositionIndex = cellGcmCgGetParameterResource(programVS, position) −←↩

CG ATTR0;
367 DBG ASSERT(PositionIndex>=0);
368
369 int ColorIndex = cellGcmCgGetParameterResource(programVS, color) −←↩

CG ATTR0;
370 DBG ASSERT(ColorIndex>=0);
371
372 // Either this or cellGcmSetFragmentProgram(program, offset) should be called←↩

when a parameter changes.
373 // This command is more efficient as it only changes the parameters in memory,←↩

not the whole program.
374 cellGcmSetUpdateFragmentProgramParameter(offsetFS);
375
376 //Identiy matrix for our model View projection transform
377 Matrix4 mat = Matrix4::identity();
378 Matrix4 tempMatrix = transpose (mat);
379 //Send mvp to vertex shader
380 cellGcmSetVertexProgramParameter (mvp, (float∗)&tempMatrix);
381
382
383 //−−− #Vertex DATA i.e. the actual triangles that we’ll draw #←↩

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
384
385 printf(”Making loads of triangles \n”);
386 const int numVerts = 3; // for our simple triangle
387
388 //Reserve space for the vertex buffer in local memory
389 //Remember, this function doesn’t actually save anything to memory.
390 stVertex∗ vertexBuffer = (stVertex∗)LocalMemoryAlign(128, sizeof(stVertex)∗←↩

numVerts);
391
392 // Could set the vertex data here once − however, we modify it on the fly within←↩

the update loop
393
394 uint32 t VertexBufferOffset;
395 //Get the offset address for our vertex buffer in local memory
396 err = cellGcmAddressToOffset((void∗)vertexBuffer, &VertexBufferOffset);
397 DBG ASSERT(err==CELL OK);
398
399 // ∗∗∗ #Main Loop# ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
400
401 // We are all ready − Just keep looping and drawing
402 while (true)
403 {
404 DBG HALT
405 // ∗−1−∗ set viewport←↩

−−−←↩

406 //The viewport is the mapping of coordinates to the pixels in the frame buffer.
407 //The viewport could be smaller than the screen buffer, but not in this case.
408 //These settings also define where the origin (0,0,0) is, in this case, the centre of←↩

the screen.
409
410 uint16 t x = 0; // starting position of the viewport (left of screen)
411 uint16 t y = 0; // starting position of the viewport (top of screen)
412 uint16 t w = resolution.width ; // Width of viewport
413 uint16 t h = resolution.height ; // Height of viewport
414 float fmin = 0.0f; // Minimum z value
415 float fmax = 1.0f; // Maximum z value
416
417 // Scale our NDC coordinates to the size of the screen
418 float scale[4];
419 scale [0] = w ∗ 0.5f;
420 scale [1] = h ∗ −0.5f; // Flip y axis !
421 scale [2] = (fmax − fmin) ∗ 0.5f;
422 scale [3] = 0.0f;
423
424 // Translate from a range starting from −1 to a range starting at 0
425 float offset[4];
426 offset [0] = x + scale [0];
427 offset [1] = y + h ∗ 0.5f;
428 offset [2] = (fmax + fmin) ∗ 0.5f;
429 offset [3] = 0.0f;
430
431 // analogous to the glViewport function ... but with extra values !

432 cellGcmSetViewport (x, y, w, h, fmin , fmax , scale , offset);
433
434 // ∗−2−∗ Clear buffers −−−−−−−−−−−−−−−−−−−−−−−
435 cellGcmSetColorMask (CELL GCM COLOR MASK R |
436 CELL GCM COLOR MASK G |
437 CELL GCM COLOR MASK B |
438 CELL GCM COLOR MASK A);
439
440 // ∗−3−∗ Setup Scene rendering parameters −−−−−−−−−−−−−−−−−
441
442 cellGcmSetDepthTestEnable (CELL GCM TRUE);
443 //cellGcmSetDepthTestEnable (CELL GCM FALSE);
444
445 cellGcmSetDepthFunc (CELL GCM LESS);
446 //cellGcmSetDepthFunc(CELL GCM NEVER);
447
448 cellGcmSetCullFaceEnable(CELL GCM FALSE);
449
450 //cellGcmSetBlendEnable(CELL GCM FALSE);
451 cellGcmSetDepthTestEnable(CELL GCM TRUE);
452
453 cellGcmSetShadeMode(CELL GCM SMOOTH);
454
455 // ∗−4−∗ Clear Scene −−−−−−−−−−−−−−−−−−−−−−−−−−−
456
457 // This funky bit of code smoothly bends the screen clear color between
458 // red and blue so we know we are rendering to the screen!
459 static float count = 0;
460 count += 0.1f;
461 unsigned char r = ((int)count)%255;
462 unsigned char g = 32;
463 unsigned char b = (255−(int)count)%255;
464 cellGcmSetClearColor ((b <<0)|(g <<8)|(r <<16)|(255 <<24));
465
466 cellGcmSetClearSurface (CELL GCM CLEAR Z | CELL GCM CLEAR S |←↩

CELL GCM CLEAR R |
467 CELL GCM CLEAR G | CELL GCM CLEAR B |←↩

CELL GCM CLEAR A);
468
469 // ∗−5−∗ Set shader and draw vertices ←↩

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
470
471 // Put vertice data in here − doing it here so we can
472 // change it on the fly within the update loop if we want (i.e., for animations)
473
474 // Triangle − 3 corner vertices −−−−−
475 // Bottom left (red)
476 vertexBuffer[0].x = −1;
477 vertexBuffer[0].y = −1;
478 vertexBuffer[0].z = 0;
479 vertexBuffer[0].rgba = 0xff0000ff;
480
481 // Top middle (green)
482 vertexBuffer[1].x = sin (count);
483 vertexBuffer[1].y = 1;
484 vertexBuffer[1].z = cos (count);
485 vertexBuffer[1].rgba = 0x00ff00ff;
486
487 // Bottom right (blue)
488 vertexBuffer[2].x = 1;
489 vertexBuffer[2].y = −1;
490 vertexBuffer[2].z = 0;
491 vertexBuffer[2].rgba = 0x0000ffff;
492 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
493
494 // ∗∗ Vertex Data
495 cellGcmSetVertexDataArray(PositionIndex,
496 0,
497 sizeof(stVertex),
498 3,
499 CELL GCM VERTEX F,
500 CELL GCM LOCATION LOCAL,
501 VertexBufferOffset);
502
503 cellGcmSetVertexDataArray(ColorIndex,
504 0,
505 sizeof(stVertex),
506 4,
507 CELL GCM VERTEX UB,
508 CELL GCM LOCATION LOCAL,
509 VertexBufferOffset + sizeof(float)∗3);

www.napier.ac.uk/games/

Tutorial 4
Introduction to GCM and PS3 graphics — 9/10

510
511
512 // set polygon fill mode
513 cellGcmSetDrawArrays(CELL GCM PRIMITIVE TRIANGLES, 0, numVerts)←↩

;
514
515 // ∗−6−∗ Finished Drawing Swap buffers←↩

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
516
517 //If a flip is still in progress, wait until the previous flip ends.
518 while (cellGcmGetFlipStatus ()!=0)
519 {
520 sys timer usleep (100);
521 }
522
523 cellGcmResetFlipStatus ();
524
525 //Do the flip
526 cellGcmSetFlip ((uint8 t) swapValue);
527 cellGcmFlush ();
528 //Stop the RSX executing commands until flip is done.
529 cellGcmSetWaitFlip ();
530
531 swapValue = ! swapValue ;
532 cellGcmSetSurface (& surfaces [swapValue]);
533 }
534
535 puts(”Goodbye: Quitting!\n”);
536 return 0;
537
538 }// End main(..)
539
540
541 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
542
543
544
545 /∗
546 void main
547 (
548 float4 color in : COLOR,
549 out float4 color out : COLOR
550)
551 {
552 color out = color in;
553 }
554 ∗/
555 unsigned char fs basic[208] = {
556 0x00, 0x00, 0x1B, 0x5C, 0x00, 0x00, 0x00, 0x06, 0x00, 0x00, 0x00, 0xD0, 0x00←↩

, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x20,
557 0x00, 0x00, 0x00, 0xA0, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0xC0, 0x00,←↩

0x00, 0x04, 0x18, 0x00, 0x00, 0x0A, 0xC5,
558 0x00, 0x00, 0x10, 0x05, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x86, 0x00,←↩

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
559 0x00, 0x00, 0x00, 0x80, 0x00, 0x00, 0x10, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00,←↩

0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00,
560 0x00, 0x00, 0x04, 0x18, 0x00, 0x00, 0x0A, 0xC5, 0x00, 0x00, 0x10, 0x05, 0xFF←↩

, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x95,
561 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x8F, 0x00,←↩

0x00, 0x10, 0x02, 0x00, 0x00, 0x00, 0x01,
562 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x43, 0x4F, 0x4C, 0x4F, 0x52,←↩

0x00, 0x63, 0x6F, 0x6C, 0x6F, 0x72, 0x5F,
563 0x69, 0x6E, 0x00, 0x43, 0x4F, 0x4C, 0x4F, 0x52, 0x00, 0x63, 0x6F, 0x6C, 0x6F←↩

, 0x72, 0x5F, 0x6F, 0x75, 0x74, 0x00, 0x00,
564 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x05, 0x00, 0x00, 0x00, 0x00, 0x00,←↩

0x00, 0xFF, 0xFF, 0x00, 0x00, 0x02, 0x00,
565 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x3E,←↩

0x01, 0x01, 0x00, 0xC8, 0x01, 0x1C, 0x9D,
566 0xC8, 0x00, 0x00, 0x01, 0xC8, 0x00, 0x3F, 0xE1
567 };
568
569 /∗
570 void main
571 (
572 float4 position : POSITION,
573 float4 color : COLOR,
574
575 uniform float4x4 modelViewProj,
576
577 out float4 oPosition : POSITION,
578 out float4 oColor : COLOR

579)
580 {
581 oPosition = mul(ModelViewProjMatrix, position);
582 oColor = color;
583 }
584 ∗/
585 unsigned char vs basic[672] = {
586 0x00, 0x00, 0x1B, 0x5B, 0x00, 0x00, 0x00, 0x06, 0x00, 0x00, 0x02, 0xA0, 0x00←↩

, 0x00, 0x00, 0x09, 0x00, 0x00, 0x00, 0x20,
587 0x00, 0x00, 0x02, 0x60, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x02, 0x80, 0x00,←↩

0x00, 0x04, 0x18, 0x00, 0x00, 0x08, 0x41,
588 0x00, 0x00, 0x10, 0x05, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x01, 0xD9, 0x00←↩

, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
589 0x00, 0x00, 0x01, 0xD0, 0x00, 0x00, 0x10, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00,←↩

0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00,
590 0x00, 0x00, 0x04, 0x18, 0x00, 0x00, 0x08, 0x44, 0x00, 0x00, 0x10, 0x05, 0xFF,←↩

0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x01, 0xE8,
591 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0xE2, 0x00,←↩

0x00, 0x10, 0x01, 0x00, 0x00, 0x00, 0x01,
592 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x28, 0x00,←↩

0x00, 0x0C, 0xB8, 0x00, 0x00, 0x10, 0x06,
593 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x01, 0xEE, 0x00, 0x00, 0x00, 0x00, 0x00←↩

, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
594 0x00, 0x00, 0x10, 0x01, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00,←↩

0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x18,
595 0x00, 0x00, 0x0C, 0xB8, 0x00, 0x00, 0x10, 0x06, 0xFF, 0xFF, 0xFF, 0xFF, 0←↩

x00, 0x00, 0x01, 0xFC, 0x00, 0x00, 0x00, 0x00,
596 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10, 0x01, 0x00,←↩

0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x00,
597 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x18, 0x00, 0x00, 0x0C, 0xB8, 0x00,←↩

0x00, 0x10, 0x06, 0xFF, 0xFF, 0xFF, 0xFF,
598 0x00, 0x00, 0x02, 0x0D, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,←↩

0x00, 0x00, 0x00, 0x00, 0x00, 0x10, 0x01,
599 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,←↩

0x00, 0x04, 0x18, 0x00, 0x00, 0x0C, 0xB8,
600 0x00, 0x00, 0x10, 0x06, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x02, 0x1E, 0x00←↩

, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
601 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10, 0x01, 0x00, 0x00, 0x00, 0x02, 0x00,←↩

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
602 0x00, 0x00, 0x04, 0x18, 0x00, 0x00, 0x0C, 0xB8, 0x00, 0x00, 0x10, 0x06, 0xFF,←↩

0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x02, 0x2F,
603 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,←↩

0x00, 0x10, 0x01, 0x00, 0x00, 0x00, 0x02,
604 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x18, 0x00,←↩

0x00, 0x08, 0xC3, 0x00, 0x00, 0x10, 0x05,
605 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x02, 0x49, 0x00, 0x00, 0x00, 0x00, 0x00,←↩

0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x40,
606 0x00, 0x00, 0x10, 0x02, 0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 0x01, 0x00,←↩

0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x18,
607 0x00, 0x00, 0x08, 0xC5, 0x00, 0x00, 0x10, 0x05, 0xFF, 0xFF, 0xFF, 0xFF, 0x00←↩

, 0x00, 0x02, 0x59, 0x00, 0x00, 0x00, 0x00,
608 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x53, 0x00, 0x00, 0x10, 0x02, 0x00,←↩

0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x01,
609 0x00, 0x00, 0x00, 0x00, 0x50, 0x4F, 0x53, 0x49, 0x54, 0x49, 0x4F, 0x4E, 0x00,←↩

0x70, 0x6F, 0x73, 0x69, 0x74, 0x69, 0x6F,
610 0x6E, 0x00, 0x43, 0x4F, 0x4C, 0x4F, 0x52, 0x00, 0x63, 0x6F, 0x6C, 0x6F, 0x72←↩

, 0x00, 0x6D, 0x6F, 0x64, 0x65, 0x6C, 0x56,
611 0x69, 0x65, 0x77, 0x50, 0x72, 0x6F, 0x6A, 0x00, 0x6D, 0x6F, 0x64, 0x65, 0x6C←↩

, 0x56, 0x69, 0x65, 0x77, 0x50, 0x72, 0x6F,
612 0x6A, 0x5B, 0x30, 0x5D, 0x00, 0x6D, 0x6F, 0x64, 0x65, 0x6C, 0x56, 0x69, 0←↩

x65, 0x77, 0x50, 0x72, 0x6F, 0x6A, 0x5B, 0x31,
613 0x5D, 0x00, 0x6D, 0x6F, 0x64, 0x65, 0x6C, 0x56, 0x69, 0x65, 0x77, 0x50, 0x72←↩

, 0x6F, 0x6A, 0x5B, 0x32, 0x5D, 0x00, 0x6D,
614 0x6F, 0x64, 0x65, 0x6C, 0x56, 0x69, 0x65, 0x77, 0x50, 0x72, 0x6F, 0x6A, 0x5B←↩

, 0x33, 0x5D, 0x00, 0x50, 0x4F, 0x53, 0x49,
615 0x54, 0x49, 0x4F, 0x4E, 0x00, 0x6F, 0x50, 0x6F, 0x73, 0x69, 0x74, 0x69, 0x6F,←↩

0x6E, 0x00, 0x43, 0x4F, 0x4C, 0x4F, 0x52,
616 0x00, 0x6F, 0x43, 0x6F, 0x6C, 0x6F, 0x72, 0x00, 0x00, 0x00, 0x00, 0x02, 0x00,←↩

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,
617 0x00, 0x00, 0x00, 0x09, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00,←↩

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
618 0x40, 0x1F, 0x9C, 0x6C, 0x00, 0x40, 0x00, 0x0D, 0x81, 0x06, 0xC0, 0x83, 0←↩

x60, 0x41, 0xFF, 0x80, 0x40, 0x1F, 0x9C, 0x6C,
619 0x00, 0x40, 0x03, 0x0D, 0x81, 0x06, 0xC0, 0x83, 0x60, 0x41, 0xFF, 0x85
620 };

5.3 Executable Output
You won’t see any sexy graphics on screen when you run the
graphics program. However, you’ll see the screen gradually

www.napier.ac.uk/games/

Tutorial 4
Introduction to GCM and PS3 graphics — 10/10

blend between blue and red (i.e., the background), while a
triangles is drawn on the screen. The program will continue
to run in the render while modifying the vertices on the fly
(as shown in Listing 7). You can dissect the code - possibly
modify the vertices so more triangles are drawn on the screen,
a procedural shape is drawn (e.g., sphere, cube, or changing
height terrain)

Congratulations You have successfully compiled and run
your first graphical program on the PS3. You are now ready to
move forwards and start compiling more complex programs
and take advantage of sound, and the game-pad controller.

6. Conclusion
In summary, if everything went well, you should have got
graphics working on your PS3 and are ready to start rendering
complex geometry (e.g., virtual environments). The PS3 SDK
and Visual Studio integration should be work seamlessly - so
that you can step through and debug your compiled PS3 code
in the SN debugger.
While the first few sections of the code will be reusable in fu-
ture projects, the code dealing with vertex arrays and shaders
is not extensible in it’s current state. In the next Graphics tuto-
rial (Basic Graphics Framework), this code will be expanded
out into a system of classes that can be extended and built
upon

Recommended Reading
Programming the Cell Processor: For Games, Graphics, and
Computation, Matthew Scarpino, ISBN: 978-0136008866
Vector Games Math Processors (Wordware Game Math Li-
brary), James Leiterman, ISBN: 978-1556229213
Clean Code: A Handbook of Agile Software Craftsmanship,
Robert C. Martin, ISBN: 978-0132350884

References
[1] James Leiterman. Vector games math processors (word-

ware game math library) (isbn:978-1556229213), 2011.
2

[2] Syd Logan. Cross-platform development in c++: Build-
ing mac os x, linux, and windows applications (isbn:978-
0321246424), 2007. 2

[3] Matthew Scarpino. Programming the cell processor: For
games, graphics, and computational proccessing (isbn:
978-0136008866), 2011. 2

[4] Edinburgh Napier Game Technology Website.
www.napier.ac.uk/games/. Accessed: Feb 2014,
2014. 1

www.napier.ac.uk/games/

	Introduction
	Graphics Command Management (GCM)
	GCM and PSGL

	GCM Memory Management
	Memory Allocation
	Memory Access
	GCM Memory code

	GCM Libraries
	Compiling Cg Shaders (.cg, .vpo, .fpo)
	Skeleton Graphics 'Without' Any Wrapper Classes
	Implementation Overview
	Source Code
	Executable Output

	Conclusion
	References

